Explanation: To understand what objects and classes are, it is very important to get an general meaning before you start coding something. In short, objects have properties and methods. Use a phone for an example of a means to explain object oriented programming. The properties of a phone may be that it is black, cordless, has buttons, etc. A phone may also have methods, or things that it does. For example, a phone can be dialing a number, a phone can ring, redial a number, etc. Now think of how similar this is to Debug.Print:

Debug.Print “Hello World!”

Phone.Ring

In this example Debug and Phone are both objects. Their methods are: ‘Print’ (for Debug) and ‘Ring’ (for phone). Now properties could be done like this:

phone.Color = black

The book does a very good job of explaining classes as ‘blue prints’ for an object. That is, there are blue prints for making a phone. When we actually use a phone, this is an instance of using a phone. That is to say, a phone is built when we want to use it. Think of the object cmdNext. When we say cmdNext.Enabled = False, this is one instance of using object. Just like Debug.Print is an instance of the Debug object.

Advantages of using objects: The main advantage to using objects is what the book calls encapsulation. This means objects have their own self contained properties and methods…as we already have seen. Think of this pseudo example for cleaning your house:

Clean House ()

get cleaning supplies

vacuum living room

dust living room

clean living room windows

vacuum my room

dust my room

clean my windows

…

End Clean House

Rather than writing the same 3 lines of code twice, with objects you can simplify this:

Clean House ()

Get cleaning supplies

Livingroom.clean

Myroom.clean

End Clean House

This may seem trivial but the concept can really help you grasp OO programming. Here we simplified livingroom and myroom to be 2 objects. Then vacuuming, dusting, and window cleaning are all encapsulated in the clean method.

Examples: VBA has built in objects that you can use. The access forms are one example of this. Create a blank access db with a form called frmEasy, which has nothing on it for the moment. To reference the form from inside the IDE you would type:

Forms(“frmEasy”)

It is also important to note that Forms(0) would go to the first form in your db, Forms(1) would go to the second form etc. Now create a text field on the form called txtName. When you refer to the text field in VBA you would do this:

Forms(“frmEasy”).Controls(“txtName”)

Notice that frmEasy is our object and txtName is a property of this object.

Next:
Now create a button on the form called cmdCheck, label the button with the caption “check”. Go to the VBA IDE for the OnClick event for cmdCheck. And write the following code:

If IsNull(txtName) Then

 DoCmd.Close

End If

Now view the form and click the button. The form should close. Now open it again and type something in the txtName field. Click the button, it should not close. Now create another form called frmMedium which also has a text box called txtInput. Add this code, so your final result looks like this:

If IsNull(txtName) Then

 DoCmd.Close

Else

 DoCmd.OpenForm "frmMedium", acNormal

 Forms("frmMedium").Controls("txtInput") = Forms("frmEasy").Controls("txtName")

End If

End Sub

When form frmEasy is opened, if the txtName field is empty, then the form is closed. If it is not empty, then

· Form frmMedium is opened

· txtInput in frmMedium is give the value of txtName in frmEasy

Different ways to refer to objects:

Looking back at frmEasy, we can refer to this form in a few ways:

· Forms![frmEasy]

· Forms(“frmEasy”)

Active Forms and Me:

To see the name of an active form…that is a form that is open type the following:

?Screen.ActiveForm.Name

When we say me, we are not referring to ourself of course, but rather to the active form…that is the form that has focus. For example, if we have three forms open (frmA, frmB, and frmC). If we are filling out a textbox (“txtInput”) on frmA, and we want to have something that uses the input in this textbox, then we say Me.Controls(“txtInput”).

